International Conference on Control, Engineering & Information Technology (CEIT'13)

Proceedings Engineering & Technology - Vol.3, pp. 45-50, 2013
Copyright - IPCO

TLID: A Tool for Linux

Intrusion Detection

Ines Ben Tekaya, Bechir AyeB*, Mohamed Graief

* PRINCE Laboratory
4011 Hammam Sousse, Tunisia

! bent ekaya.ines@oila.fr

ayeb_b@ahoo.

com

" MIRACL, ISMS

BP 1030, Sfax 3018,

Tunisia

? nohaned. grai et @ mag. fr

Abstract— In this paper we describe architecture and
implementation of a Tool for Linux Intrusion Detection (TLID).
The TLID is based on formal verification. The main featres of
this work are twofold. It exploits formal method in the intrusion
detection field. It presents our tool TLID which can
automatically transform Linux code to Symbolic ModelVerifier.

Keywords— Computer attacks, intrusion detection, computer
security, Linux commands, model verifier

I. INTRODUCTION

The intrusion field was introduced by Anderson.wias
defined as an attempt or a threat to be the palguissibility
of a deliberate unauthorized attempt to accessrrirdton,
manipulate information, or render a system unrédiabr
unusable [1]. The difference between intrusion athck
consists of the fact that intrusion is a malicioagternally or
internally induced fault resulting from an attadkatt has
succeeded in exploiting vulnerability, while a fai$ the
adjudged or hypothesized cause of an error, theecau
which is intended to be avoided or tolerated. Atackt is a
malicious technical interaction fault aiming to &ip
vulnerability as a step towards achieving the fiaiah of the
attacker [2].

A statistical study shows that 98% of enterprisaseha
firewall to be protected from external attacks; ewer, 80%
of attacks came from internal users [3]. Detectinggrnal
normal user behaviour is a difficult problem beeaasuser
can have much dynamic behaviour and
difficult to create user profiles that determines thormal
behaviour. Using a system to distinct normal usemf
intruders is necessary. This system is called $mru
Detection System (IDS). It is defined as a secusghnology
attempting to identify and isolate computer systémrsisions
[4].

During the last two decades, many strategies arttiaus
for intrusion detection have been developed. Weaosh to
work with Unix/Linux operating system because irojple's
minds, if it is non-Windows, it is secure [5]. THigpothesis
will be countered here. More details for Unix/Lingystem
can be found in [6]. The literature on detectionings
Linux/Unix commands offers a variety of methods.spiee
their diversity, their common objective is: to dhisfuish
between a normal behaviour and an intrusive bebavithey
use aggregative, training or experimental past,daiah as

it will be aimo,

access. However, in intrusion detection, we oftad that the
user can have a dynamic behaviour that is diffefremb past
data. So, in this work we don't use past data luentract the
relation between current data to determine the bisbaviour
class.

The reminder of the paper is organized as follogcti®n 2
deals with intrusion background. In section 3, weatibe our
method. In section 4 we propose the TLID tool, amdshow
some experimental results for intrusion scenatiosection 5
we will draw our conclusions and plan for futureriuo

Il. INTRUSIONBACKGROUND
The next subsections summarize detection methodg UNIX
commands and show their limitations

A. Detection Using UNIX Commands

The object of intrusion can be files, data baseswork
connection, Input/output systems or commands Lidok.

In this paper we are interested about intrusiomgisi
Linux/Unix commands because it can characterizer use
behaviour more efficiently than other object. Tloddwings
paragraphs present some works about methods usmitg U
commands. These works are interested on intrusédecton
or on a specific intrusion like masquerade detactio

llgun, et al. present the state transition analysethod
[71[8]. They used the known Unix intrusion to creaha
penetration scenario. A penetration is viewed sscuence of
actions performed by an attacker that leads fromesmitial
state on a system to a target compromised stagrevehstate
is a snapshot of the system representing the vaifiesl
volatile, semi-permanent and permanent memory imeston
the system. The initial state corresponds to tlge sbf the
system just prior to the execution of the penairatiThe
compromised state corresponds to the state regdtom the
completion of the penetration. Between the initahd
compromised states are one or more intermediatee sta
transitions that an attacker performs to achievee th
compromise.

Another method is based on sequence matching. The
incoming stream event is segmented into overlap/fixed
length sequences. The choice of the sequence lehgth
depends on the profiled user. In practical, itsefl to the
value | = 10 in the SEA dataset [9]. Each sequéadien
treated as an instance in an I|-dimensional spaak ian
compared to the known profile. The profile is a, §&§, of

CPU usage, memory usage, session times and resource

45

PC
Typewriter
International Conference on Control, Engineering & Information Technology (CEIT'13)

Proceedings Engineering & Technology - Vol.3, pp. 45-50, 2013

Copyright - IPCO

PC
Typewriter
45

previously stored instances and comparison is padd

The intrusion detection method in Linux/Unix comrdan

between all y{T} and the test sequence via a similarityusing formal verification seeks to improve on somg

measure. Similarity is defined by a measure, Simxwhich
makes a point-by-point comparison of two sequencesd v,
counting matches and assigning greater weight facadt
matches.

The maximum of all similarity values computed forthe
score for the test command sequence. Since thesessare
very noisy, the most recent 100 scores are averdfede
average score is below a threshold an alarm igdai$he
threshold is determined based on the quantileBeoémpirical
distribution of average scores [10].

Another method, used statistical method,

limitations that the authors observed in the exgstinethods.
This section briefly identifies some of their chamaistics.
The major weakness of these methods is that thpgnikon
aggregative, training or experimental past data fdsults of
statistical methods are closed to the training deltde the
result of state transition analysis method is ddpeith the
defined penetrations attacks which are non valuate

Another limitation is they are based on analysiogpmmand
by command (line per line). This local analysis cait be
equivalent to a global analysis (all of lines).

is called Lastly, they cannot make difference between thesrof

uniqueness. It is based on the idea that commamds ¢commands in the sequence used. The statisticaloaetare
previously seen in the training data may indicateiempted based on the command frequency while a state tiamsi
masquerade. Uniquely used commands account forf3#eo analysis method can't detect the attacks basedeiuéncy
data. A command has popularity i if exactly i usese that such as deny of service.

command. They group the commands such that eaalpgro In the following, we focus in these limitations poesent

contains only commands with the same popularityeyThour method based on model using formal verificatiith

define a test statistic that builds on the notidruopopular
and uniquely used commands. They assign the sawghtild
to all users. This threshold is estimated via cnaglation:
They split the original training data in the SEAtaiket into
two data sets of 4000 and 1000 commands. Usindatiger
data set as training data, they assign scorefiéosraller one.
This is repeated five times, each time assignirgyescto a
distinct set of 1000 commands. They set the thidstmothe
99th percentile of the combined scores acrosssalisuand all
five cross validations. For their data, the resgltihreshold is
0.2319 [9][11].

Maxion use Naive Bayes classifiers
masqueraders by looking at the classifiers misiflezton
behavior [12].
probability distribution modeling the UNIX sequenc&he
goal of the training procedure is to establish ifgsfof self
and nonself, and to determine a decision threstold
discriminating between examples of self and nongalf each
User X in the SEA dataset, a model of Not X cao &ls built
using training data from all other victims. The Ipability of
the test sequence having been generated by Nobh Xhea be
assessed in the same way as the probability bbisig been
generated by User X. The larger the ratio of trebpbility of
originating with X to the probability of originatinwith Not X,
the greater the evidence in favor of assigningd¢kesequence
to X. The exact cut-off for classification as Xaths the ratio
of probabilities below which the likelihood thatetlsequence
was generated by X is deemed too low, can be datednby
a cross-validation experiment during which proligbiatios
for sequences which are known to have been gexeogteelf
are calculated, and the range of values theseirfedé
sequences cover is examined.

B. Limitationsin existing methods

46

Symbolic Model Verifier (SMV).

[Il. INTRUSIONDETECTIONIN LINUX/UNIX
COMMANDSWITH SMV

This section presents an overview about our intrusi
detection method by user specification. It's basedemporal
logic and formal verification. It focuses on glotzaialysis of
user behaviour.

The user's observed behaviour is deduced from Linux

terminal. In the rest of this paper, we use thentélinux,
which can be interchanged with Unix. We are inte@sbout

and deteat Linux script not about a line of commands. Tof@en a

global analysis we should specify what are the-pmtperties

This method use command occurrentieat characterize an attack script?

These properties formed the requirements spedtitgthe
desirable behaviour). We choose to transform thewmo i
temporal logic.

In this paper, we concentrate on formal verificatio
technique, especially model checking, becausedtats, in
general, less user involvement in the verificaiwacess. We
exploit model-checking to automatically verify ifgiven user
behaviour (user's observed behaviour) satisfied
requirement specification (the desirable behaviolir)the
verification tool provides a counter-example, welute that
the user’'s observed behaviour don't satisfy theuiregnent
specification. We choose the SMV tool for verifioat

The user's observed behaviour will be transformaad i
SMV code. However Linux script differs from SMV cadNe
propose our tool, named LSc2SMV (Linux Script torfBplic
Model Verifier) to do the transformation.

We obtain a SMV program containing logical propesti
which we verify by SMV tool. The result will be \Bed
properties if the behaviour is normal or violatedgerties if
the behaviour is intrusive. Figure 1 illustrateis fthema.

the

PC
Typewriter
46

User ohservad behaviour System specification

Script Linds

Rewriting in temparal lagid

Logical properties

Sy Code

Result

Fig.1 A diagram tracing our method.

A. Fromanti-proprieties to temporal logic

The anti-properties (AP) are unwanted propertied tdan
cause damage in our system. They can be:
AP1: Execute some illegal commands,
AP2: Change source or command destination,
AP3: Execute illegal actions (parameters, etc.),

« AP4: Having infinite loop,

« APS5: Having auto-replication,

« APG6: Detain a resource infinitely ...

The system specification are formalizes using tRe Bhey
can be expressed in proportional logic or templogit.

Propositional logic is the branch of logic thatdias ways
of joining and/or modifying entire propositionsatments or
sentences to form more complicated propositiorsestents
or sentences, as well as the logical relationstuiygsproperties
that are derived from these methods of combiningltring
statements.

The temporal logic is used within the framework tbé

B. SMV

SMV is a formal verification tool, which means thalhen
you write a specification for a given system, irifres that
every possible behavior of the system satisfies
specification.

A specification for SMV is a collection of propesi
Properties are specified in a notation called tewplogic.
Temporal logic specifications can be automaticédigmally
verified by a technique called model checking.

SMV is quite effective in automatically verifyinggperties.
Sometimes, when checking properties, the verifieitl w
produce a counterexample. This is a behavioraletréat
violates the specified property. This makes SMV eryv
effective debugging tool, as well as a formal vesifion
system, so that is why we choose SMV for verifizati

the

C. FromLinux script to SMV

The LSc2SMV tool will convert Linux script (LSc) tan
SMV code. It will be in the form of main module Table |
shows the transformation in constants and variables

TABLE |
VARIABLES AND CONSTANTSCASES
Type LSc SMV
Integer variable varname = valeyr VAR
<varname> :
number ;
Variable of an foriin01234 VAR
interval <varname> :
0.4;
Constant SIZE=32 #define SIZE
32

Table Il shows the transformation in the conditéord loop
cases form.

reagent systems, which where the software is s@gpos
maintain a relation of coherence between the ifiputs and

the output flows. The temporal logic allows expnegsthe
state evolution of a system.
We choose the temporal logic because temporal isgin

extension of propositional logic. Either in temgotagic,
propositions are qualified in terms of time.
The following paragraph explains how to write sowfi¢he

anti-properties AP and properties (P) using temdogac.

AP4: Having infinite loop

The AP4 consider that user can modify the systd
performance. So they consume memory to overload
system.

P4: Do not have infinite loop ; AP4 = G ~~(ai "aj)

let:G: always

A and operator
=: not operator

ai : loop and aj: loop condition

TABLE I
CONDITIONS AND LOOP CASES
Type LSc SMV
Condition | if[<condition>] <stmtl> | if(<condition>)
else <stmt2> fi <stmtl>
else <stmt2>
Case case $variable in case{<condl>:
vall) stmtl>; ; <stmtl>
...... *) <stmtn>; ; esac ... <condn> : <stmtn>
[default : <dftlstmt>]}
Switch switch(<expr>) switch(<expr>){
<casel>: <stmtl> <casel>: <stmtl> ...
m breaksw <casen> : <stmtn>
he <casen> : <stmtn> [default : <dftlstmt>]}
breaksw
default : <dftlstmt>
breaksw endsw
for for var in $files ; for(var = init ; cond ;
do var = next)
<stmt>
while while condition ; do
<stmt> done -

An example is: while(true), while(i :=i+1), etc.

Some others anti-properties can be formalized sash
having auto-replication, detain a resource infigitetc. Due
to space limitation, others properties can be fanrid3].

47

PC
Typewriter
47

The indirect transformation is based on propettegerify
in Linux script.

Some other conversion in the file name or in thieldo
name, in arrays, in expressions cases, in functionsan be
given. More details can be found in [14].

V. TLID: TOOL FORLINUX INTRUSIONDETECTION

processes kept by the computer's operating systeitine
process table becomes saturated, no new programstand
until another process terminates.

The generated SMV code is given by figure 4. The
properties to verify is called deny. We choose ofpverify
all" to verify deny. The result is given by figuse We have a
violated property (false value) because the behavis

The TLID architecture can survey a user and anahjge intrusive.

behaviour.
A. Survey auser
There are two solutions to survey a user:
- The first solution consists in using

file .bash_history. But this file cannot give
strengthened and real-time history because when

use other shell, like csh,, this method cannot thee

history. Either when you tape kill -9.
The second solution is to develop a patch. It cisadd

modify file system in Linux, which are bashhist.

histexpand.c, histfile.c, history.h and history&e do
this because Linux is an open source (to obtain
patch e-mail : bentekaya.ines@voila.fr).

V. CONCLUSIONS

In this paper, we are interested by attacks usiimux.
commands. We have proposed a method that explaiteeim

thechecking. This model use algorithms, executed hypider

&ools, to verify the correctness of our systemcdmbines
Y&8turity field with formal verification.

The user's observed behaviour is deduced from Linux
terminal. We are interested about a Linux script almout a
line of commands. To perform a global analysis Wweutd

Cspecify the anti-properties that characterize sachtscript.

These properties formed the requirements spegéditdthe
thesirable behaviour). We choose to transform theto i
temporal logic. We exploit model-checking to auttioelly
verify if a given user behaviour satisfied the riegonent

You can choose a user and we obtain the user'sn@ise gpecification. If the verification tool provides eounter-

behaviour. You can either choose a user and agiayyn in
figure 2, and we obtain the user's observed belavio this
day. It is composed by time, process identifierD)Pand
commands.

B. Analyse user behaviour

After survey a user, you can choose a propertyetdy In
this example, we choose to verify the service darfigure 3.
The button LSc2SMV became enabling. When we cliekl,
we obtain the SMV file. This file contains the eation of
every actions do by selected user in the chosenldegnsists
to verify the specified properties. We choose “ppverify
all" to verify if the properties we specified iact hold true or
false for all time. If the property should be falsa
counterexample appears in the trace page.

C. Intrusion scenario example

Intrusion scenario Sc between users can be defised
Sc={A,V, S} with:
A: an attacker

V: a victim
S ={s1, s2... sn}: a set of steps
Every step is a sequence of commands with thést

parameters. The next paragraph shows an exampteoério.

It have been developed and tested in Linux RecBrdrprise
version 5 and we use TLID and SMV for verification.

We develop an example of denial of service whica ferk
bomb. The code in figure 4 is the following:

[ines@localhost tmp]$ function testb()

{

testb|testb &

} itestb

It works by creating a large number of processey ve

quickly in order to saturate the available spacé¢hm list of

example, we deduce that the user’'s observed balragan’t
satisfy the requirement specification.

This method is applied to distinct normal user béra
from intruders’ behavior. It has lead to the TLIDok
development. We give some experimental resultbdavshow
the TLID works under some attacks.

There is another attacks group which can be named
unknown attacks. In this new group, attacks cowdse the
intrusion detection systems crash and thus incampésting.
It becomes clear that present approaches to eweailutatision
detection system are limited to some known attacks.

We divide our future work into two main parts: refiand
improve attacker competence and extend scenarioctode
multi-attacks and equivalent attacks.

REFERENCES
[1] J. P. Anderson, “Computer Security Threat Monitgrirand
Surveillance,” Technical report, Washing, PA, JameAnderson Co.,
1980.
[2] D. Powell and R. Stroud, “Conceptual Model and Atestture of

MAFTIA”", Eds., MAFTIA (Malicious and Accidental FédtuTolerance

for Internet Applications) project deliverable D21AAS-CNRS

Report 03011, 2003.

C. Mathei,. (2004) “Ouverture des réseaux |P dé&grtse : risques ou
opportunité ?” [Online]. Available:
http://www.awt.be/contenu/tel/res/IPforum23-04_Rése unifié
sécurisé.pdf.

et

[4] B. E. Cloete and L. M. Venter, “A comparison ofrirgion Detection
systems” Computers & Security, vol 20, Issue 8, §p6-683, Dec.
2001.

[5] A. Patrizio. (2006) “Linux Malware On The Rise.Ojfline]. Available:
http://www.internetnews.com/devnews/article.php/B&€6.

[6] M. Santana, “Chapter 6 - Linux and Unix Securityon@puter and
Information Security” Handbook 2009, pp. 79-92.

[71 Koral llgun , Richard A. Kemmerer , Philip A. Pes. “State

Transition Analysis: A Rule-Based Intrusion DetentiApproach. ”
Journal IEEE TRANSACTIONS on Software Engineerivgl. 21, No.
3, pp. 181-199, 1995.

48

PC
Typewriter
48

Intruston Detectionusing Linux Commands

AC Snilfer Detection

Choone & Usar inss - |

i (g o s =] e]

Mime=Tue May 70 11:35:30 20171 BI72 cd Amp
Titn==Tue May 10071:30:32 2011 8372 cp eleid.socoonl imp

Fig.2 User’s observed behaviour in a chosen day

Choose a wser: ines . Tl

Shocse s any: [oue][4 > |[zon v || ox

Time=\ed Jun 1 17:18:03 2011 2121 T funcbon testbi| {Esthtestt &)beaib |

[PM1;:Execute some illegni commands
[| P2:C heange source o comima nd des Lnatlon

L P3 Use il=gal parametc s
Anti Propertics;)
| Pa:Hawving Infinfs loap

| PG.alhar ptnperi'i:-h be defineol

[usczsmv | =swv

Fig.3 TLID

49

PC
Typewriter
49

(8]

9]

[10]

[11]

), Afonctioniemv)
Eile Prop Yiew Golo
Browser | Properties | Resulis | Cene | Using | Sroups |

History Abstraction

2

| &Il praperies
Property | Status |

derty Lirrserifien

Source | Trace | Log |

File Shoaw

sutput condl, condZ Loolaan;

rame jcoesthkt;

A e lpip=1:

aca lacoalade) ;

e int {pointsrirogule}

nam= = |testhk];:

carac := lpipal:

acc = laccolade};

poeint = |peintwirgulsl:
aondl = names & carad B name;
ol = ace & poinkt & name;

denyiascert G ~f{condl & cond?];

b

modules maEin{nsme, carac,acs, point, condl , cond?)

Fig.4 The generated SMV code

Ie Brop _!iew Goto History Abstraction
Browser | Properties | Results | Gone | Using | Groups |

| Property J Result'j

dery falss

Fig.5 Verification result

K. llgun. “USTAT - A Real-time Intrusion Detectio®ystem for
UNIX,” Master's Thesis, University of California &anta Barbara,
Nov. 1992.

M. Schonlau, W. DuMouchel, W. H. Ju, A. F. Karr, Wheus and Y.
Vardi. “Computer Intrusion: DetectingMasquerades’tatiStical

Science, Vol. 16, No. 1,pp 1-17, 2001.

T. Lane and C E. Brodley. “Sequence matching arainleg in

anomaly detection for computer security.” In AAAld¥shop : Al

Approaches to Fraud Detection and Risk Managenmt,43-49.
AAAI Press (1997).

M. Theus and M. Schonlau. “Intrusion detection base structural
zeroes.” Statistical Computing and Graphics Newesled, pp. 12-17,
1998.

[12]

[13]

[14]

50

M. Roy. “Masquerade detection using enriched conunlares.” In:
Proceedings of international conference on Depdad8gstems and
Networks (DSN-03), pp. 5-14, June 2003.

I.B. Tekaya, M. Graiet, and B. Ayeb. Intrusion dgien with symbolic
model verifier. In the Sixth International Confecenon Software
Engineering Advances, ISBN: 978-1-61208-165-6, pad8&3-189
(2011).

I.B. Tekaya, M. Graiet, and B. Ayeb. Intrusion ai@n in Linux/Unix
commands using formal verification. In The FoutE International
Symposium on Innovation in Information and Commatian
Technology (2011).

PC
Typewriter
50

